in Title
  in Authors
  in Institutions
  in Abstract
  in Keywords

  - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  - Instructions to Authors
   "sample paper download"

  - Preparation of Tables
    and Illustrations


  - Chemical and
    Mathematical Usage,
    Addreviations, and
    Symbols


  - Editorial Board

  - Manuscript submission
   form


 



Article Info.
2005.05.31; 38(3) pp. 259~265
Title

Molecular Chaperones in Protein Quality Control

Authors

Sukyeong Lee and Francis T. F. Tsai*  

Institutions

Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA  

Abstract

Proteins must fold into their correct three-dimensional conformation in order to attain their biological function. Conversely, protein aggregation and misfolding are primary contributors to many devastating human diseases, such as prion-mediated infections, Alzheimer¡¯s disease, type II diabetes and cystic fibrosis. While the native conformation of a polypeptide is encoded within its primary amino acid sequence and is sufficient for protein folding in vitro, the situation in vivo is more complex. Inside the cell, proteins are synthesized or folded continuously; a process that is greatly assisted by molecular chaperones. Molecular chaperones are a group of structurally diverse and mechanistically distinct proteins that either promote folding or prevent the aggregation of other proteins. With our increasing understanding of the proteome, it is becoming clear that the number of proteins that can be classified as molecular chaperones is increasing steadily. Many of these proteins have novel but essential cellular functions that differ from that of more ¡°conventional¡± chaperones, such as Hsp70 and the GroE system. This review focuses on the emerging role of molecular chaperones in protein quality control, i.e. the mechanism that rids the cell of misfolded or incompletely synthesized polypeptides that otherwise would interfere with normal cellular function.  

Keywords

Clp/Hsp100, Molecular chaperones, Proteasome, Protein folding, Protein quality control